The Adsorption of Butene, Butadiene, and Ammonia on $UO_3-Sb_2O_3$ Catalysts

I. MATSUURA

Department of Inorganic Chemistry and Catalysis, University of Technology, Eindhoven, The Netherlands

Received September 14, 1973; revised June 24, 1974

The adsorption equilibria of butene-1, butadiene, and ammonia were studied on antimony-uranium oxide catalysts. On UO_3 and U_3O_8 , which are nonselective oxidation catalysts, there is strong and irreversible adsorption of butene-1. However, butene-1 was found to be adsorbed rapidly but weakly and reversibly on $\text{USb}_1\text{O}_{10}$ which proved to be active and selective for the oxidation of olefines.

Similar types of adsorption sites for butene-1, butadiene and ammonia on Bi_2MoO_6 were observed on $\text{USb}_3\text{O}_{10}$. From these results a surface reaction site model is proposed which refers to special mobile bulk oxygens in rows on USb_3O_n and is very similar to that given earlier for $Bi₂MoO₆$. On the basis of this model the mechanism of the ammoxidation of propene to acrylonitrile was discussed.

INTRODUCTION

The SOHIO U-Sb oxide catalyst (1) is one of the most selective catalysts for the ammoxidation of propene to acrylonitrile and is moreover a quite selective oxidation catalyst for olefins. Grasselli and Callahan (2) reported that there are two different U-Sb oxide compounds, USbO_5 and $\mathrm{USb}_3\mathrm{O}_{10}$, of which only the former proved to be active and selective for the ammoxidation. Simons, Houtman, and Schuit (3) reported that USbO, is an active catalyst for the combustion of butene but that $\text{USb}_3\text{O}_{10}$ is selective for its oxidation to butadiene. Recently Aykan and Sleight (4) and independently Grasselli and Suresh (5) proposed crystal structures for USbO_5 and $\text{USb}_3 \cdot \text{O}_{10}$ that are closely related to the α -UO₃ structure. They concluded for $\text{USb}_3\text{O}_{10}$ that there is one type of uranium but two crystallographically different types of antimony and four types of oxygen. Grasselli and Suresh (5) suggested that the more labile but less abundant oxygen participates in the selective oxidation and also

that depleted oxygen sites are supplied from oxygen in the lattice.

On Bi₂MoO₆ catalyst Matsuura and Schuit (6) found two types of adsorption sites, namely *B*-sites which adsorb butene weakly and A-sites which adsorb butadiene strongly. An A-site is supposed to be a special O^{2-} -ion connected to a Bi³⁺ (or Bi⁵⁺) ion. This oxygen is selectively removed by partial reduction of the catalyst. The catalytic activity was found to be proportional to the A-site surface concentration and to the second power of that of the B-sites, leading to the assumption that the reaction site is a combination of one A-site and two B-sites. In the experimental results of butene oxidation on Bi,MoOs catalyst and on $\text{USb}_3\text{O}_{10}$ catalyst as given by Batist et al. (7) and Simons *et al.* (3), there appear to be many similarities. Therefore it may be expected that on $\text{USb}_3\text{O}_{10}$ catalyst two different types of centers might also exist.

It is the purpose of this paper to describe the adsorption of butene, butadiene, and ammonia on the selective olefin oxidation

Copyright @ 1974 by Academic Press, Inc. All rights of reproduction in any form reserved.

catalyst $\text{USb}_3\text{O}_{10}$, and also on USbO_5 , UO_3 , U_3O_8 , and Sb_2O_4 , and to propose a model for the surface site.

EXPERIMENTAL PROCEDURE

 $\text{USb}_3\text{O}_{10}$ and USbO_5 were prepared by method I as described by Simons et al. (3) . UO, was prepared by precipitation from a solution of uranyl acetate with ammonia solution and calcination at 300°C for 4 hr. U_3O_8 was obtained by calcining UO_3 in air at 750° C for 16 hr. $UO₂$ was prepared by reduction of U_3O_8 by hydrogen at 450°C for 2 hr. $\mathrm{Sb}_2\mathrm{O}_4$ was obtained by oxidating $Sb₂O₃$ (from Merck Inc.) in air at 725°C for 16 hr. The surface areas of these catalysts were measured by the BET method using nitrogen, and the results are summarized in Table I.

The adsorption method was described in an earlier report by Matsuura and Schuit (7).

On several catalysts butene was found to be adsorbed strongly and irreversibly. At higher temperatures a gas was desorbed that was further investigated by the following method. First, the amount of irreversibly adsorbed butene was obtained as follows. Butene was dosed at a relatively

FIG. 1. Adsorption of butene-1 on $UO_3-Sb_2O_3$ catalysts.

high pressure (about 10 mmHg) at 25°C for 24 hr to obtain equilibrium. A known amount of gas was then withdrawn from the system until the gas pressure fell be-

Catalyst	Surface area $(m^2 g^{-1})$	Compo- sition	Type of isotherm	V_m $\rm (cm^3 \ g^{-1})$	$log P_0$ (mmHg)	Q (kcal) $mole^{-1}$	$-\Delta S_{\rm ads}$ (e.u. at 25° C)
$\mathrm{USb}_{3}\mathrm{O}_{10}$	22	C_4H_8	DS^a (W)	0.10	10.01	15.8	32.0
		C_4H_6	DS (W)	0.10	9.88	14.8	32.3
			SS^b (S)	0.045	9.18	23 3	34.2
		NH ₃	SS (W)	0.09	3.60	5.3	4.2
			DS (S)	0.09	9.46	28.8	31.0
JSbO ₅	15	C_4H_8	SS (W)	0.04	3.35	5.2	7.2
			(S) $\overline{}$	0.11	irreversible		
U_3O_8	10		SS (W)	0.03	3.32	4.9	6.8
			(S) $\overline{}$	0.15	irreversible		
UO ₃	20		SS (W)	0.02			
			(S) $\overline{}$	0.35	irreversible		
UO ₂	9		$_{\rm SS}$ (W)	0.07	3.34	5.3	7.1
Sb_2C_4	29		no adsorption				

TABLE 1 ADSORPTION DATA OF C₄H₈, C₄H₆, AND NH₃

a DS: dual-site adsorption.

b SS: single-site adsorption.

FIG. 2. Adsorption isotherm of butene-1 on $UO_3-Sb_2O_3$ catalysts. (a) Dual-site adsorption on USb_aO₁₀; (b) single-site adsorption on USbO_6 .

low 10^{-3} mmHg at 50° C. The remaining adsorbed butene cannot be recovered as such, because it is oxidized by the catalyst. In the next step, the catalyst was heated at a constant rate $(5^{\circ}C/\text{min}$ from 50 to 55O"C), the gas desorbed being condensed successively every 5 min in traps cooled in liquid nitrogen. After termination of the experiment the condensed gas was analyzed. It was found to be $CO₂$ and $H₂O$ by gas chromatography. For each experiment log of catalyst was used.

EXPERIMENTAL RESULTS

Adsorption of Butene-1

Figure 1 shows that there are two types of butene adsorption on UO_3 , U_3O_8 , and USbO_5 , one being weak and nondissociative

(see Fig. 2b), the other being strong ana irreversible. For UO_2 and USb_3O_{10} there is only one type of adsorption (see Fig. 2a) It is weak and nondissociative for $UO₂$ and similar to that for the above mentioned catalysts. On $\text{USb}_3\text{O}_{10}$ it is dissociative with a heat of adsorption of 15.8 kcal mole⁻¹ higher than the value of 12.0 kcal mole⁻¹ on Bi_2MoO_6 . For Sb_2O_4 no adsorption was observed. The strong and irreversibly adsorbed butene can be removed as $CO₂$ and $H₂O$ above 100°C. The evolution of CO₂ is shown for the three catalysts in Fig. 3. The temperature of maximum $CO₂$ evolution is 250°C for UQ_3 , 310°C for U_3Q_8 , and 380°C for USbO,, which is close to the temperature of 350°C at which the oxida, tion of butene on U_sO_s and $USbO_s$ increases steeply (see Simons *et al.* (3)).

FIG. 3. $CO₂$ formation from adsorbed butene-1 on $UO₃-Sb₂O₃$ catalysts.

FIG. 4. Adsorption of butadiene on USb₃O₁₀. (a) Adsorption equilibria; (b) weak and dual-site adsorption isotherm; (c) strong and single-site adsorption isotherm.

From Fig. 3, the activation energy of $CO₂$ evolution can be calculated in the and with following way. The rate of evolution of $CO₂$ at any given temperature T was approximated by $(\Delta CO_2/\Delta t)_T$ where ΔCO_2 is the amount of $CO₂$ evolved during a time period Δt between two measurements, Activation energies thus calculated were and T the average temperature in this period. The rate evidently depends on the amount of carbonaceous material still present at the beginning of the period. If the total amount of this material at the beginning of the run is represented by the total amount of CO, evolved at the end of the run (q_0) and that removed during preceding periods, denoted here by q_{co_2}

$$
\Delta \text{CO}_2/\Delta t = k_T (q_0 - q_{\text{CO}_2})_T.
$$

$$
k_T = (\Delta \text{CO}_2/\Delta t)/(q_0 - q_{\text{CO}_2})
$$

$$
k_T = A \exp(-E/RT),
$$

 $\ln(\Delta CO_2/\Delta t)/(q_0-q_{CO_2}) = -E/RT + \ln A$.

Adsorption of Butadiene

Figure 4 shows that there are two types of butadiene adsorption on $\text{USb}_3\text{O}_{10}$ catalyst, one being weak and dissociative with a total adsorption of 0.10 cm³ g⁻¹ (similar

Hence

FIG. 5. Adsorption of ammonia on $\text{USb}_3\text{O}_{10}$. (a) Adsorption equilibria; (b) strong and dual-site adsorption isotherm.

Sb

ં છે કે S_b $[0, 1, 1, 0]$ **Sb** Sb U_1 (y (1) <u>u2 ≮∪y</u> Sb Sb Sb Sb **SЬ** (U₃, U₃ U_1 U_2 U_1 U_1 U_2 U_1 $\overline{U_1}$ Sb U_1 Sb U₁ U₂ U₁ U₁ U₂ U₁ U, Sb U, Sb Sb Sb Sb Sb Sb Sb Sb u_3 $\overline{u_3}$ u_3 $\frac{1}{11}$ U_3 $|U_3|$ U_3 Sb Sb $|Sb|$ S_b S_b S_b S_b U_1 U_2 U_1 U_2 U_1 U_2 U_1 U_1 Sb U_1 Sb $\frac{1}{\sqrt{2}}$ 0 0 $\frac{1}{\sqrt{2}}$ 0 0 $\frac{1}{\sqrt{2}}$ 10) lb1 ICI

FIG. 6. Metal ion positions of $UO₃-Sb₂O₃$ catalysts. (a) UO_3 ; (b) $USbO_5$; (c) USb_3O_{10} .

in amount to the adsorption of butene-1), the other being strong and nondissociative with a total adsorption volume of 0.045 cm³ g^{-1} . The ratio between the maximum adsorption volume of the strong and weak adsorption of butadiene is near to $1/2$, i.e., the same ratio as found for GOO"C-preheated $Bi₂MoO₆$ (8). The heats of adsorption calculated are 14.8 kcal mole-l for weak adsorption and 23.3 kcal mole⁻¹ for the strong adsorption.

Adsorption of Ammonia

Figure 5 shows that it is possible to distinguish two different types of ammonia adsorption on the $\text{USb}_3\text{O}_{10}$ catalyst. One is weak and nondissociative with a heat of adsorption of 5.6 kcal mole-l, the other is strong and dissociative and with a heat of adsorption of 28.8 kcal mole⁻¹. It is remarkable that the volume of strongly adsorbed ammonia is nearly twice that of the strongly adsorbed butadiene, just as for $Bi₂MoO₆$ (9). All adsorption data are given in Table 1.

DISCUSSION

The oxides UO_3 , U_3O_8 , $USbO_5$, and $\text{USb}_3\text{O}_{10}$ present a particularly interesting subject of study since:

(a) Their structures are closely related, as has been shown by Aykan and Sleight (4) and in greater detail by Grasselli and Suresh (5) .

(b) Grasselli and Callahan (2) have shown that there is a sudden transition from nonselective to selective oxidation on going from USbO_5 to $\text{USb}_3\text{O}_{10}$ (see also Simons *et al.* (3)).

(c) The adsorption properties of $\text{USb}_3\text{O}_{10}$ and $Bi₂MoO₆$ are similar. There are the weak butene adsorption sites (B-sites) and strong butadiene adsorption sites (A-sites). the ratio A/B being $1/2$ and finally the ratio of the strong ammonia adsorption to the strong butadiene adsorption being l/2.

The U⁶⁺ ions in α -UO₃ and in U₃O₈ are in an eightfold oxygen surrounding (see Wells (10)). Two oxygens form a linear arrangement O-U-O, and the other six a distorted octahedral surrounding. In USbO, one of every two U^{5+} ions occurs in a similar arrangement, the other being approximately sixfold surrounded, again with two oxygens in the perpendicular position. The Sb⁵⁺ ions are octahedrally surrounded. In $\text{USb}_3\text{O}_{10}$ U⁵⁺ ions are eightfold oxygen surrounded as for the U⁶⁺ ions in α -UO₃. There are two different types of Sb^{5+} ions, all octahedrally surrounded. One type is connected with U^{5+} and Sb^{5+} ions, but the other is only surrounded by Sb^{5+} ions.

Figure 6a(I) presents a simplified diagram of the cationic arrangements in the basic plane for α -UO₃ and Fig. 6a(II) presents the arrangement perpendicular to the basic plane, i.e., parallel to the O-U-O direction. In USbO, the cation positions marked 1 and 2 (see Fig. 6b) are occupied by U^{5+} cations. The Sb^{5+} cations occur in rows parallel to the U-rows (position 3). In $\text{USb}_3\text{O}_{10}$ the 2-positions marked 2 and 3 are occupied by Sb^{5+} cations (see Fig. 6c).

Now, the number of sites on which one molecule of butene is adsorbed initially is evidently much lower than either the number of cations or anions on the surface. The surface area per molecule adsorbed (including weak adsorption) turns out to be

 U_2 U_1

which appears to indicate that initial adsorption occurs on U ions and not on Sb ions. We therefore assume that the adsorption occurs at an anion vacancy connected to a U ion. After butene adsorption, the numbers of oxygen ions removed from the surface are

$$
UO_3
$$
 5.3 × 10¹⁸/m² = one O²– per 19 A²
\n U_3O_8 4.7 × 10¹⁸/m² = one O²– per 19 A²
\nUSbO₅ 2.4 × 10¹⁸/m² = one O²– per 41 A²

Assuming that an oxide surface consists of O^{2-} ions and oxygen vacancies in the ratio $1:1$, all surface oxygens apparently are removed for UO_3 and U_3O_8 (surface area per O^{2-} ion is 10 Å^2). On USbO₅ half of these surface oxygens are removed. It might be assumed that the oxygens removed are bonded to pairs of U ions because such removable oxygens do not exist on $\mathrm{USb}_3\mathrm{O}_{10}$. From these assumptions, the nonselective oxidation sites might be $\cdots U_2 \cdots 0 \cdots U_1 \cdots 0 \cdots U_2 \cdots \quad \text{or} \quad \cdots U_3$ \cdots O \cdots U₁ \cdots O \cdots U₃ \cdots with an oxygen vacancy on U, and a surface oxygen either on U_2 or U_3 (see Fig. 6a and b).

It is noteworthy that the ratio of sites that adsorb butadiene strongly (A-sites) to those that adsorb butene weakly (B-sites) is equal to 1:2, just as for the 600° C-preheated $Bi₂MoO₆$. In an earlier paper, Matsuura and Schuit (8) proposed that the A-site is the active site provided it is connected to two $B\text{-}sites$. An $A\text{-}site$ was postulated to be a set of two anion vacancies on Bi^{3+} ions (Bi³⁺-cus) with an oxygen (O_A) in the center also connected to a Bi^{3+} (or Bi^{5+}) ion belonging to a $Bi₂O₂$ edge. This oxygen ion is selectively removed by partial reduction of the catalyst. A B-site is a combination of two O^{2-} ions and one vacancy connected to a $Mo⁶⁺$ ion: this combination of sites adsorbs olefins, either as π -bonded complexes at the vacancy or as a σ -bonded allyl-intermediate with one of the two O^{2-} ions, the other being occupied by the II atom dissociated. If we are allowed to assume a similar configuration for the A-site on $\text{USb}_3\text{O}_{10}$, i.e., vacancy on Sb^{3+} or Sb^{5+} \ldots oxygen on Sb^{5+} \ldots vacancy on Sb^{3+} or Sb^{5+} and for the B-site, i.e., a combination of two O^{2-} ions and one vacancy connected to a U^{6+} or U^{5+} ion, the following arrangement represents the active site viz.

On the selective catalyst $\text{USb}_3\text{O}_{10}$ there are actually two possibilities to represent this arrangement: one is in the basal plane (Fig. $6c(I)$) which is similar to the model given by Grasselli and Suresh (5), and the other is in a perpendicular direction (Fig. $6c(II)$ more alike to that suggested earlier for Bi_2MoO_6 (7). A similiar situation for the active sites is present on the planes of the less selective USbO, catalyst (Fig. 6b). There is, however, a difference with $\text{USb}_3\text{O}_{10}$ where the eightfold coordinated U^{5+} ion is connected with 8 Sb⁵⁺ ions: in USbO, a correspondingly coordinated U^{5+} ion is connected with six Sb^{5+} ions and two U⁵⁺ ions. Differences in environment of the active sites might affect the adsorption properties leading to a strong difference in the selectivities of $\text{USb}_3\text{O}_{10}$ and

FIG. 7. Surface model of $\mathrm{USb}_3\mathrm{O}_{10}$. (I) Basal plane: Active surface according to Grasselli and Suresh (5) ; (II) active surface according to Matsuura (9) ; (III) active plane.

 USbO_5 . Moreover on USbO_5 there is present a similar presumably nonselective oxidation site for the configuration $U_2 \cdots 0 \cdots$ $U_1 \cdots 0 \cdots U_s$ on UO_s as shown in Fig. 6a and b.

In Fig. 7(I) a more detailed picture of the situation is given for the basal plane of $\mathrm{USb}_3\mathrm{O}_{10}$. Let us assume that this plane represents the surface. Half of all the cations are covered by an oxygen anion, and for the other half the oxygen position is vacant. The surface anions presumed to be active by Grasselli and Suresh (5) are the O_{IV} ions; the oxygens covering the cations in the mixed rows (U-Sb-U-Sb) belong to this category. In these rows there are Bsites and A-sites: although the site arrangement is precisely that proposed by Grasselli and Suresh (5) , the B/A -ratio being 1 in this surface, it is not in accordance with our measurements. Although this surface plane corresponds to Grasselli and Suresh's site arrangement, it apparently is not an acceptable proportion.

Another and more realistic surface plane is given by Fig. 7(11). It represents a cut through the unit cell as indicated by Fig. 7(111). It fits both demands, that of Grasselli and Suresh as to the site arrangement and that of our ratio B/A being 2. In this plane there is alternately a row of A_1 (U and Sb cations alternately arranged) and A_2 (only Sb cations arranged), connected by inner rows of oxygen anions. There are four crystallographically different types of oxygen ions, viz. O_I and O_{IV} in the A_1 and A_2 -rows and O_{II} and O_{III} in the interconnecting oxygen rows with A_1 -rows (for the nomenclature of oxygen, see Grasselli and Suresh (5)). Therefore the B-site will be present as the combination of a vacancy on a U⁶⁺-ion in the A_1 -row with two O_{III} 's, the model being similar to the $B\text{-site of } Bi_2MoO_6$. The A-site is an O²ion on a Sb⁵⁺ ion with two anion vacancies on Sb^{3+} ions $(Sb^{3+}-cus)$ in the A_2 -row edge comparable to the two anion vacancies on Bi^{3+} ions with center of an O^{2-} ion on Bi^{3+} (or Bi^{5+}) ion in the Bi_2O_2 layer edge of $Bi₂MoO₆$ (see Matsuura and Schuit (8), Fig. 10). According to this model the ratio of B/A is 2 in good agreement with the

experimental value and also a similar type of reaction site for $Bi_2MoO₆$.

There is another interesting aspect if one compares the two models (I) and (II) ; it is connected with the position of the weekly bonded oxygen ions of the type O_{IV} . According to Grasselli and Suresh (5) they are located in the A_1 rows of the basal plane (I) marked by O_{IV} , and considered by them as the selective oxygen ions. In the new model (II) the same oxygen ions O_{IV} in the A_2 -row edge are chosen as the selective oxygen ions. Moreover, this selective oxygen in the A_2 -row edge O_A is connected with weakly bonded oxygen ions O_{IV} in the bulk (see Fig. 7, I and II) that form an important aspect of the selective olefin oxidation site as mentioned Grasselli and Suresh (5), the model being now also similar to that for $Bi₂MoO₆$.

The comparison of the adsorption properties for both selective catalysts $\text{USb}_3\text{O}_{10}$ and $Bi₂MoO₆$ shows stronger adsorptions on the former compound. This can be related to the observed catalytic activities, the activation energies for butene oxidation being 8 kcal mole⁻¹ on $\text{USb}_3\text{O}_{10}$ (3), and 12 kcal mole⁻¹ on Bi_2MoO_6 (6), as measured with pulse experiments. In a previous report (8) we suggested that the butene oxidation mechanism could proceed as follows: dissociative adsorption of butene on $B\text{-site} \rightarrow \text{activated}$ complex in which an allyl is bonded to a Bi^{3+} (Sb³⁺)-cus next to the $O_A \rightarrow$ dissociation of the second H atom to an oxygen belonging to the B $site \rightarrow desorption$ of butadiene. The final process, i.e., the desorption of H_2O , occurs after migration of two H atoms to an O_A . In this reaction mechanism the rate determining step is the formation of the activated complex. Therefore it is possible that the stronger adsorption on $\text{USb}_3\text{O}_{10}$ as compared with Bi_2MoO_6 will lead to a more easy formation of the activated complex and since this step is rate determining the activation energy becomes lower.

The strong adsorption of ammonia has a V_m (maximum adsorption) which is double that of the O_4 as found on Bi_2MoO_6 (9). Therefore this ammonia adsorption has to occur on the two Sb³⁺-cus next to the O_A . Grasselli and Suresh's mechanism (5) for ACKNOWLEDGMENT the ammoxidation of propene to acrylonitrile on $\text{USb}_3\text{O}_{10}$ catalyst suggested that The author wishes to thank Professor Dr. G. the reaction between a C_3H_4 complex on Sb^{5+} and a NH intermediate is important, throughout the course of this work. as was proposed by us in a closely- similar reaction mechanism based on adsorption REFERENCES

 $\text{USb}_3\text{O}_{10}$ as follows: $\text{Catal. 14, 93 (1969).}$

C. A. Schuit for helpful discussion and interest

- measurements on Bi_2Mo_6 (9). 1. BELG., P., 643,435 (1963) Standard Oil.
This mechanism can be modified for 2. GRASSELLI, R. K., AND CALLAHAN, J. 2. GRASSELLI, R. K., AND CALLAHAN, J. L., J.
- (1) $C_3H_6 + U^{6+} + 20B_1^{2-} \rightarrow (C_3H_5O_{B1})^- + (O_{B1}H)^- + U^{4+}$ $(C_3H_5O_{B1})^+ + Sb_{V1}^{3+} + U^{4+} \rightarrow U^{6+} + (C_3H_5)^- Sb_{V1}^{3+} + O_{B1}^{2-}$ $(C_3H_b)^{-}Sb_{V1}^{3+} + O_{B1}^{2-} \rightarrow (C_3H_4)^{2-}Sb_{V1}^{3+} + (O_{B1}H)^{-}$
- (2) $NH_3 + Sb_{12}^{3+} + O_{B2}^{2-} \rightarrow (NH_2)^{-}Sb_{12}^{3+} + (O_{B2}H)^{-}$ $(NH_2)^{-}Sb_{V2}^{3+} + O_{B2}^{2-} \rightarrow (NH)^{2-}Sb_{V2}^{3+} + (O_{B2}H)^{-}$

where O_{B1}^2 and O_{B2}^2 are oxygen ions be- 3. SIMONS, TH. G. J., HOUTMAN, P. N., AND longing respectively to $B\text{-site number}$ 1 SCHUIT, G. C. A., J. Catal. 23, 1 (1971). and 2, and $\mathrm{Sb}_{v_1}^{3+}$ and $\mathrm{Sb}_{v_2}^{3+}$ are the Sb^{3+} - 4. AYRAN, K., AND SLEIGHT, A. W., J. Amer. cus on both sides of O_A^2 ². Ceram. Soc. 53, 427 (1970).

Acrylonitrile is formed directly from 5. GRASSELLI, R. K., AND SURESH, D. D., J. Catal. (C_3H_4) and (NH) complexes next to O_4^{2-} : 25, 273 (1972).

$$
(C_3H_4)^2Sb_{V1}^{3+} + O_A^2Sb^{5+} + (NH)^2Sb_{V2}^{3+} \rightarrow C_3H_3N + H_2O_A + Sb^{3+} +
$$

action to acrylonitrile from ammonia and $A, J.$ Catal. 15, 267 (1969).
noncone needs three express issue that here α . MATSUURA, I., AND SCHUIT, G. C. A., J. Catal. propene needs three oxygen ions that have to be supplied simultaneously from the catalyst. It is important for selective olefin 25, 314 (1972).
 α axidation that the special mobile bulk θ . MATSUURA, I., J. Catal. 33, 420 (1974). oxidation that the special mobile bulk oxygen in the rows are connected with the O_A on the surface.

-
-
-

 $28b_{V1}$ and v_2 ⁺

- In particular it follows that the direct re- α . KEIZER, K., BATIST, PH. A., AND SCHUIT, G. C. ortion to early primarily from ammonis and A. J. Catal. 15, 267 (1969).
	- 20, 19 (1971).
	- 8. MATSUURA, I., AND SCHUIT, G. C. A., J. Catal.
	-
	- 10. WELLS, A. F., "Structural Inorganic Chemistry," p. 965. Oxford University Press, Oxford. 1967.